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Abstract. Generative Adversarial Networks (GANs) show promise for
data augmentation. However, they can overfit high-dimensional tran-
scriptomic data, failing to capture biological diversity. This paper intro-
duces a new metric that reveals discrepancy patterns between real and
generated data, often overlooked by standard metrics. Our evaluation
opens new perspectives for GAN-based data augmentation, balancing a
priori the diverse modes of the real data and aligning a posteriori the
generated data.
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1 Introduction

Transcriptomics data (e.g., microarrays [1]) provide complex information on indi-
vidual gene expression levels, enabling cancer diagnosis and prognosis predictions
in cancer research [2]. Deep learning (DL) models excel at extracting features
from complex high-dimensional data. However, these models require large train-
ing datasets to avoid overfitting. The largest public transcriptomics datasets are
smaller by several orders of magnitude than the standards of DL models, making
their implementation challenging.
To address data scarcity, model-based data augmentation methods have been
proposed [3]. Deep generative models (e.g., Generative Adversarial Networks
(GANs) [4]) can generate realistic synthetic data, offering an alternative to tra-
ditional augmentation techniques unsuitable for tabular data (e.g., cropping).
Despite their widespread adoption, GANs often struggle to cover the data di-
versity. This phenomenon is harder to detect in tabular data, where human
perceptual analysis is not feasible. A systematic evaluation of GANs is of the
utmost importance, especially when the synthetic data is used for downstream
medical applications.

2 Context & Contribution

Context. Following the GAN-based augmentation strategy of [5], we focus on
the Wasserstein GAN with Gradient Penalty (WGAN-GP) [4]. This model trains
simultaneously a generator to create realistic data and a critic evaluator.
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General Challenges. Intrinsic biases in training data and GANs can cause
reduced diversity in generated data, known as mode dropping and mode collapse.
The former happens when the GAN misses specific modes in the data, while the
latter results in overly similar samples within a mode.
State-of-the-Art-Metrics. The widely adopted Precision/Recall (PR) met-
rics [6] evaluate the realism-diversity trade-off. Conversely to their classification
counterparts, they rely on manifold approximation and local neighborhoods to
measure overlap between generated and true samples. However, these metrics can
underestimate the lack of diversity in generated data, as such approximations
are very sensitive to outliers and high dimensionality.
Contribution. We suggest a new method to assess data diversity by estimating
the distance to the underlying manifold. Our tractable manifold approximation
is based on extracting the real data principal components and using the recon-
struction error as a distance proxy. The proposed PCA-based reconstruction
error metric (REM) is defined as:

REM(xi) = ∥xi − PPTxi∥2 (1)

Where xi is an original input sample, P is the matrix of the 2,000 first principal
components (PCs) 3 resulting from the PCA performed on the real data, and
∥.∥2 is the Euclidean norm. A lower REM distribution in the generated data
compared to true data should thus account for the diversity loss.

3 Results & Experimental validation

Experimental setting. We used a benchmark microarray dataset [7], retain-
ing 32,043 genes after mapping preprocessing4. The data was standardized to
zero mean and unit variance. Our feature selection approach achieved 98.77%
± 0.08 test multiclass accuracy5, outperforming [2] by 4% (train-test split is
10,643-1,313 samples). Our best WGAN-GP was optimized over 40 runs using
Bayesian optimization and maximizing the F1 score over PR. The optimal model
was trained with 500 epochs, batch normalization, batch size of 64, 1e-3 (gener-
ator) and 5e-4 (discriminator) learning rates, and Adam optimizer.

Results. In Fig. 1B, the UMAP visualization of real (colored) and data gener-
ated by our best WGAN-GP (black) shows a compelling data manifold coverage.
This model achieved a relatively good precision of 93.33% ± 0.31 and a recall
of 69.81% ± 0.41. However, a closer look in Fig. 1C shows that recall perfor-
mance varies across tissue types regardless of their dataset representation. For
instance, the ’ovary’ cohort has poor recall (78.57% 0 recall) and low represen-
tation (3.31%), while ’bone’ is undercovered (49.53% 0 recall) despite being the
second most prevalent tissue (25.4%). We analyze this mode collapse through

3 The PCs that explain the maximum variance.
4 Mapping was performed using: http://www.ensembl.org/biomart
5 All results are averaged over five runs on a 48GB A40 NVIDIA GPU.

http://www.ensembl.org/biomart
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additional covariates showing 43.54% of cancerous data and 23.69% healthy data
had a 0 recall. This indicates that average PR metrics can conceal GAN failures.

Fig. 1: Multifaceted evaluation of the realism-diversity trade-off: A. Reconstruc-
tion Error Metric (REM) distribution for generated (black) and real (orange)
data; B. UMAP of generated (black) and real samples colored by their RE; C.
REM of the five worst tissue types according to the real samples with recall=1
and recall=0.

In contrast, our REM metric provides deeper insights into failure modes. Fig. 1A
shows a great discrepancy between real and generated data REM, clearly high-
lighting mode collapse: generated samples closely resemble a few originals on
specific dimensions with uninformative noise in others. In Fig. 1B, some high-
REM real samples (orange) are uncovered by generated data, suggesting they
are in hard-access regions. Our REM metric also confirms the cancerous data
heterogeneity assumption: i) Fig. 1C demonstrates that low recall (red) corre-
lates with higher REM; ii) on average, cancerous data REM is higher by 4.6
than healthy data per tissue type.

4 Conclusion

Our multifaceted evaluation of GANs on gene expression data revealed key in-
sights beyond PR metrics. First, our metric shows that noise-corrupted original
samples can mimic realism. Secondly, high REM values underscore how data
heterogeneity affects diversity learning. Lastly, dimensionality reduction visual-
izations can falsely suggest sample proximity. These findings highlight the GANs’
imitation bias that some approaches address with outlier-robust indicators [8] or
GANs adapted to disconnected manifolds [9] at increased computational cost.
We propose a data-centric solution: smoothing the generated manifold through
Optimal Transport [10] alignment between collapsed samples (low REM) and
diversified samples (high REM). Similar balancing between the diverse modes of
the real data could be conducted a priori.
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