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Abstract. In this work we study the properties of the kernel Kullback
Leibler divergence (KKL) introduced in [1], in order to do sampling with
Wasserstein Gradient flows. Our approach involves optimization in the
space of probability measures, using the KKL divergence as the objec-
tive function. This divergence measures a kind of distance between two
probability distributions: the target distribution, which is only partially
known, and a set of particles intended to represent as well as possible
the target distribution. By performing an adapted gradient descent on
the particle distribution, we can transport the particles from an initial
position to a good representation of the target. Our contributions are
to propose a regularized version of the KKL divergence which is defined
for any distribution, to derive a statistical upper bound for the conver-
gence of the KKL on empirical distribution to the KKL on continuous
distribution and to propose a closed form expression for the KKL and its
Wasserstein gradient which enables to implement a sampling algorithm
implying gradient descent.
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1 Introduction

Sampling in Machine Learning consists in approaching as close as possible a
target probability distribution g for which we only know partial information.
For example, in Bayesian inference one can derive the posterior distribution of
the parameters of some neural network. In this case the density of ¢ is know
up to a normalisation constant. There are various ways of solving this problem,
including MCMC methods [2] or variational inference methods [3]. In genera-
tive modelling, only a set of observation from ¢ is available and the goal is to
generate data whose distribution is similar to the training set distribution. To
solve the problem in this case, it is usual to minimise a divergence or distance D
between a discrete probability distribution p that we construct iteratively and
q the empirical distribution from the observations of ¢ that we possess. This is
the approach we study in this article. It can be formulated as an optimization
problem
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where P(X) is the space of probability distributions on X. The choice for the
divergence D is quite important, indeed depending on its geometry, the min-
imization can be more or less efficient. For example, in [4] D is chosen to be
Maximum Mean Discrepancy (MMD) divergence which has its weaknesses when
used on its own because the MMD has many local minima. We chose the Ker-
nel Kullback Leibler divergence (KKL) introduced in [1] which is defined in the
following section. Then, Wasserstein’s gradient descent principle is close to the
classical gradient descent. For a fixed target g, let’s note F(p) = D(pl||q). Let
h:R? — R ¢ > 0 and consider the push forward distribution (I + eh)g,. If
we can develop

F((Ig+eh)yp) = F(p) +e(VwaF(p), h)p + ole),

then Vo F(p) : RY — R? is called the Wasserstein gradient of F. Then if p
is supported on a finite number of points we can build the following gradient
descent algorithm. Let x}, .27 = p’.

Ty = o) — YVwaF (pr)(x}). (1)

1.1 Definition of the regularized Kernel Kullback Leibler divergence

The Kernel Kullback Leibler (KKL) divergence is defined as follows. Let P(X)
be the set of probability distributions on X. Let k£ : X x X — R be a positive
definite kernel, A its Hilbert space with reproducing kernel (RKHS) and ¢ its
transformation function. For a probability distribution p € P(X), the covariance
operator X, : H — H is given by :

/ o(@)p(e) dp(z)
X

where * represents the transposition in H. For p, ¢ € P(X), the kernel Kullback-
Leibler divergence (KKL) is defined in [1] as:

A

KKL(p|lq) := Tr(Zplog £,) = Tr(Z,log Xg) = Y Alog() (Frr 99)3,.
(Ay)eEAxAq v

(2)

According to [1], if X is compact, if k is a positive definite continuous kernel
with k(z,xz) =1, Vz € X and if k? is universal, then D(X,||¥,) =0< p=q.
This makes the Kullback-Leibler (KKL) kernel divergence an interesting candi-
date for optimisation on P(X). In practice , we choose to use for k the gaussian
kernel which satisfies these conditions.

A major issue with KKL is that it is finite only if the support of p is included
in the support of ¢. In order to have KKL defined for any discrete distributions
p and ¢ we defined a regularized version of KKL which is for a €]0, 1],

KKLq(pllg) := KKL(p||(1-a)q+ap) = Tr(X, log X)) —Tr(X, IOg((l_a)Zq“‘?Z)Jp))'
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2 Contributions

2.1 Statistical bound

In this work, we use the regularized KKL on empirical distributions. A main
question is then to know if it is a good approximation of the KKL on continuous
distributions and if it converges to its value in population when the number of
particles goes to infinity. We derived an upper bound on the difference between
KKL,(p||G) and KKL,(p||g) for p and ¢ supported respectively on n and m
points. Under some hypothesis, the bound is

1 1 2
ogn_ ¢, (logn)
vVnAm mAmn

where C7 and C3 depend on « and on the hypothesis. We plot the evolution of
KKL, (p||¢) for an increasing number of particle n for p and ¢ for different values
of the parameter . We observe that in each case it seems to converge.
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2.2 Sampling experiment

We derived a closed form solution for the Wasserstein gradient of the KKL
divergence which enabled us to implement the gradient descent algorithm as in
1. We decided to repeat an experiment carried out in [5] and compare our results
with those obtained. The experiment consists in taking as target distribution ¢
a uniform distribution over three rings, and initializing the p distribution by a
set of points concentrated at one point on one of the rings (dark blue points).
The efficiency of our method is clear to see.
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