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Abstract. With the advent of increased computational power and ad-
vanced numerical methods, the simulation of turbulent fields has become
central to many contemporary disciplines. Traditional solvers, while de-
livering high-quality predictions, still struggle in accurately providing
fast estimations of flows due to the complexity and inherently chaotic
nature of turbulence. As numerous machine learning-based solvers have
emerged to address this problem (e.g. physics-informed neural networks
or operator learning algorithms), capturing intricate physical phenom-
ena remains a significant challenge. In the realm of generative modeling,
diffusion models have established new benchmarks for solving similar
problems. In this context, we propose a model that leverages the power
of conditional score-based diffusion models for fluid flow prediction. We
also integrate an energy constraint that rely on the statistical properties
of the flow, further enhancing the temporal stability of the simulation.
Our research, centered on a highly turbulent dataset, revealed the re-
markable stability and reliability of simple generative diffusion models
for turbulent field prediction.

Keywords: Diffusion models · PDEs · Fluid mechanics. · Stochastic
differential equations · Score matching · Numerical simulations

1 Context and Objective

Computational fluid dynamics (CFD) is a field of study focused on simulating and an-
alyzing fluid flow behavior, modelled using partial differential equations (PDEs). This
branch of fluid mechanics underpins the development of aerodynamic vehicles and
renewable energy technologies, like wind turbines and hydroelectric systems, driving
innovation and sustainability. Without external forces, most CFD problems are framed
within the context of compressible fluid dynamics, governed by the Navier-Stokes equa-
tions for the conservation of mass, momentum, and energy, namely:

∂tϱ+∇r · (ϱu) = 0 ,

∂t(ϱu) +∇r · (ϱu⊗ u− S) = 0, ∀(r, t) ∈ Ω×]0,+∞[

∂t(ϱet) +∇r · ((ϱet − S)u+ q) = 0 ,

(1)
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where u(r, t) is the fluid velocity field at position r ∈ Ω ⊂ Rd and time t ≥ 0; ϱ(r, t)
is the density; S = −P I+ 2µ∇r ⊗s u is the stress tensor where P (r, t) is the pressure
field, µ is the dynamic viscosity, and I is the identity matrix; q(r, t) is the heat flux
vector due to thermal conductivity; and et(r, t) is the total energy per unit mass.

The training data D = {x0
0,x

1
0, . . .x

S
0 } with xs

0 = {u(rr, ts), P (rr, ts); 1 ≤ r ≤ R},
0 ≤ s ≤ S, t0 = 0, and tS = T in [5] are constituted by S = 1000 snapshots with
R = 128×64 pixels of u = (u, v) and P for a compressible Karman vortex street past a
cylinder in two dimensions (d = 2) at transonic regime with Reynolds number Re = 104

and varying Mach numbers M ∈ [0.53, 0.63] ∪ [0.69, 0.90]. Our objective is to predict
x̂τ
0 := {(u(rr, τ), v(rr, τ), P (rr, τ)); 1 ≤ r ≤ R} for any unobserved time 0 ≤ τ ≤ T

starting from arbitrary initial conditions at t0. However, solving Eq. (1) in the turbulent
regime usually involves complex numerical methods (e.g. direct numerical simulation)
which provide high-fidelity outputs but come with significant computational costs.

To enable faster inference, machine learning solvers have made remarkable ad-
vancements [2], with growing theoretical evidence supporting their efficiency [7]. While
capturing long-term phenomena remains a challenge for turbulence prediction, Physics-
Informed Neural Networks (PINNs) [8] are increasingly bridging the gap but remain
limited in generalization capability. More recently, generative models, and in partic-
ular diffusion models [4,7,9], are rapidly expanding their application in physics and
gradually outpace other state-of-the-art techniques.

Diffusion models aim to infer x̂τ
0 from p0, the posterior distribution of the data set

D. Building upon the work of Kohl et al. [5], inference from p0 is done by autoregres-
sion, meaning that continuous time prediction relies on successive predictions of the
simulation states conditioned on l previous states. The maximization objective reads:

x̂τ
0 = argmax

x0

p0 (x0|c(τ, l)) , (2)

conditioning p0 on c(τ, l) = (x
⌊τ⌋−1
0 ,x

⌊τ⌋−2
0 , . . .x

⌊τ⌋−l
0 ), the l last steps of a simulation.

Here ⌊τ⌋ = s stands for the index s such that ts ≤ τ < ts+1.

2 Conditional Flow Field Prediction

Score-based diffusion models [9] are generative diffusion models that extend the concept
of Denoising Diffusion Probabilistic Models [4] (DDPMs) to continuous time domain.
These models originate from the non-normalized estimation of the density function
of energy-based models through score function (also known as Stein’s score function),
which is defined as the gradient of the log-probability distribution: s(x) = ∇x log p(x).

Let {xt; 0 ≤ t < ∞} be a random process defined on Rp and indexed on t ∈ R+.
It is a diffusion process if it is the solution of the Itō stochastic differential equation
(SDE) [6] describing the evolution of a sample x0 to its final state xT according to:

dxt = µ(xt, t)dt+ σ(xt, t)dWt , x0 ∼ p0 , (3)

where µ(·, t) : Rp → Rp is the drift coefficient, σ(·, t) : Rp → Rp×p is the diffusion
coefficient and {Wt; t ≥ 0} is a p-dimensional Brownian motion (or Wiener process).
We can reverse the time t → T − t in (3), leading to the reverse-time SDE:

dxt = µ̄(xt, t)dt+ σ(xt, t)dWt , xT ∼ pT , (4)

where µ̄(x, t) = µ(x, t)−∇x ·Σ(x, t)−Σ(x, t)∇x log pt(x), Σ = σσT, pt is the marginal
probability density function of xt, and (Wt)t≥0 is a time reversed Brownian motion.
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Analog to discrete time approach (DDPMs), solving the reverse SDE (4) starting
from a sample xT from the converging (prior) distribution pT leads to the generation of
a new sample from p0. This includes estimating the intractable time-dependent score
function s(x, t) = ∇x log pt(x) which is approached by a denoiser sθ(xt, t) by means of
score matching [9,10] leveraging the known transition kernel pt|0(xt|x0) (which assumes
linear and time-dependent only coefficients, e.g. µt = µ(·, t) and Σt = Σ(·, t)). Since
the posterior distribution is conditional (e.g. p0(x0|c(τ, l))), a conditional denoising
estimator sθ(xt, t, c(τ, l)) is used [1], optimizing the loss function (for s ∈ {l+1, . . . , S}):

LDSM(θ) = Et ∼ U(0, T )

x0, c(τ, l) ∼ p0(x0, c)

xt ∼ pt|0(·|x0)

{
λ(t)

∥∥sθ(xt, t, c(τ, l))−∇x log pt|0(xt|x0)
∥∥2
2

}
,

where λ(·) is set to be equal to TrΣt [9] to obtain a likelihood weighting function
(optimal training strategy). Each sample being conditioned by its previous states, we
propose adding a loss penalty related to the energy of the system for better time
consistency. We start by splitting the flow velocity into its mean part U and a randomly
fluctuating part u′ such that u′(r, t) = u(r, t)−U(r, t) with zero mean E{u′(r, t)} = 0
[3]. For any position {r}r∈R (R being all available positions outside the obstacle) and
fields u(·) from the dataset D, the proposed loss penalty reads:

LE(θ) =
∑

r,r′∈R

∥∥Ru(r, r
′, τ − tl, τ)−Rû(r, r

′, τ − tl, τ)
∥∥
2
,

where Ru(r, r
′, t, t′) = E{u′(r, t)⊗u′(r′, t′)} is the 2×2 autocorrelation matrix function

of the velocity field fluctuations and û is the reconstructed estimated field (from x̂0 ≃
xt+Σt.sθ(xt, t, c) [10]). Using Jensen’s inequality, the weighted minimization objective
Lw

DSM is equivalent to (for λE ≥ 0):

Lw
DSM(θ) = LDSM(θ)+λE Er, r

′ ∈ R
u ∈ D

∥∥u′(r, τ − tl)⊗ u′(r′, τ)− û′(r, τ − tl)⊗ û′(r′, τ)
∥∥
2
.

3 Results

A U-net architecture (along with transformers3) is implemented, trained on 4 Nvidia
HGX A100 with k-fold cross-validation. The inference is made on an extrapolation
problem on Mach number in the set {0.50, 0.51, 0.52} with T = 60 which is notoriously
hard to predict as shock waves occur frequently. We refer to [4,9] for optimal choice of
parameters of both the SDE and model architecture. The influence of l is not discussed
here but optimal findings suggest l = 1.

As shown in Fig. 1, the fluid flow prediction remains consistently stable over time4,
even though some fading occurs towards the end. This phenomenon however, adversely
affects the Mean Square Error (MSE), making it less efficient compared to [5]. How-
ever, for early predictions, the MSE is low (< 10−3), which is competitive. Despite
its simplicity, this straightforward architecture achieves very good results given the
complexity of the problem. Notably, our energy loss function has played a key role in

3 Backbone of the model: https://huggingface.co/blog/annotated-diffusion and https:
//github.com/yang-song/score_sde_pytorch

4 Animated results are available on: https://centralesupelec.fr/fluid_prediction and
https://centralesupelec.fr/absolute_error

https://huggingface.co/blog/annotated-diffusion
https://github.com/yang-song/score_sde_pytorch
https://github.com/yang-song/score_sde_pytorch
https://nextcloud.centralesupelec.fr/s/3zj7eTfcsCoTmtA
https://nextcloud.centralesupelec.fr/s/e6KdYRwGQHjFaSL
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Fig. 1. Prediction of the pressure field at Mach 0.5.

ensuring the observed temporal stability and overall coherence of the intermediate pre-
dictions. While the results are satisfactory, there is still a need for further improvement
in the conditioning process. Longer time horizon prediction are not feasible yet and the
inference time is relatively long (around 1 hour). A plausible enhancement technique
would be to perform diffusion in the latent space, which would substantially increase
inference speed.
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