
Highlighting hurdles to benchmarking

machine learning methods

Célestin Eve1,2, Thomas Moreau1, Gaël Varoquaux2
1INRIA MIND
2INRIA SODA

Abstract

Benchmarking learning algorithms is a critical step in advancing ma-
chine learning research, providing a means to evaluate the effectiveness
of new methods against established benchmarks. However, the bench-
marking process is fraught with variability, which can lead to misleading
conclusions if not carefully managed. In this study, we investigate the im-
pact of various factors on benchmarking outcomes, including data splitting
methods, noise levels, and dataset sizes. Through experiments using simu-
lated data and the MNIST dataset, we demonstrate that these factors can
significantly alter the performance rankings of algorithms. Our findings
highlight the need for rigorous benchmarking practices to ensure reliable
and robust comparisons in machine learning research.

Keywords: Benchmarking, Machine Learning, Ranking

1 Motivation/Introduction

Benchmarking learning algorithms is crucial for scientific progress in machine
learning. Comparing a newly developed algorithm against state-of-the-art meth-
ods provides an early indication of the algorithm’s effectiveness. To facilitate
such comparisons, reference benchmarks have been established, such as Ima-
geNet for image classification [1] or Atari 2600 games for reinforcement learning
[2]. Additionally, competitive platforms like Kaggle have emerged, allowing for
the straightforward comparison of algorithms on the same dataset, while using
private leaderboards to mitigate the risk of overfitting. Tools like Benchopt [3]
also enable efficient benchmarking of optimization methods.

Unfortunately, benchmarking is inherently a process that exhibits variabil-
ity in numerous ways [4], which can result in inconsistent rankings and mis-
leading conclusions. In the field of anomaly detection in time series, certain
widely adopted benchmarking practices may even perform worse than random
[5]. Therefore, it is essential to accurately identify and account for all sources
potentially invalidating numerical comparisons in order to achieve reliable and
robust results.

2 Methods

Let SD denote the score function associated with a dataset D, which takes as
input a decision function g and returns its score on the dataset D. The oracle
score, S∗, is defined as the expected score over the population distribution d,
i.e., S∗(g) = ED∼d[SD(g)], where d represents the underlying population distri-
bution.

Our approach involved two main steps: first, we compared decision func-
tions, and then we benchmarked learning algorithms. We considered eleven

1



score estimators using different methods for splitting the data into training (the
samples seen by the learning algorithm to deduce a decision fonction) and test-
ing (the samples on which the performance of the learned decision function is
tested) sets. The methods evaluated in our study include train test split, KFold
and ShuffleSplit with a varying number of splits ranging from 2 to 10.

To assess the ranking stability of these different procedures, we first gener-
ated a simulated dataset with normally distributed features to calculate the op-
timal theoretical estimator, the Bayes estimator, with a score sBayes on the test
set. By adding normally distributed noise, we created a suboptimal version with
performance inversely related to the noise level. Noise in data generation also
reduced the Bayes estimator’s performance. The goal of benchmarking is to es-
timate the true ranking of methods, known as the oracle ranking. This setup al-
lowed us to empirically estimate on the test set P (SItest

(Bayes) < SItest
(noisy)),

leading to a ranking inversion as S∗(Bayes) > S∗(noisy), depending on noise
levels and dataset size.

Subsequently, we ran experiments on the MNIST dataset, introduced by [6].
We selected a subset of the MNIST training set, which consists of 60,000 sam-
ples, and referred to this subset as the study set, varying its size for different
experiments. The study set was then divided into training, testing, and vali-
dation subsets. We compared the performance of decision functions generated
by various learning algorithms (ExtraTrees, RandomForest, XGBoost) on the
whole original MNIST training set, referred to here as the reference set.

Although the initial set of experiments does not include a learning phase,
we use the same data splitting techniques to maintain consistency within our
experiments. All experiments were implemented in Python, utilizing learning
algorithms and data splitting procedures from the scikit-learn library [7], as well
as the XGBClassifier from the XGBoost library [8].

3 Results

We ran each configuration of our learning-free experiments 200 times. In many
cases, as can be seen in Table 1, the noisy estimator ranked as the best estimator
more than 15% of the time.

On MNIST, in most experiments ran, the computed ranking of the learning
algorithms varied depending on the size of the study set, all others things being
equal. Typically, when the study set comprises more than 50% of the reference
set, SIreference

(XGBoost) > SIreference
(ExtraTrees), but this ranking is reversed

when the study set is reduced to 25% of the reference set.

4 Conclusion

Our experiments underscore the complexity and challenges inherent in bench-
marking machine learning algorithms. The results reveal that factors such as
the method of data splitting, the introduction of noise, and the size of the study
set can significantly influence the performance rankings of different algorithms.
Notably, even subtle variations in experimental configurations, such as the noise
level or dataset size, can lead to substantial differences in outcomes, including

2



Procedure Number of Splits Number of Inversions Number of inversions
Number of experiments

train test split N/A 35 17.5%
KFold 5 32 16%

ShuffleSplit 2 32 16%
ShuffleSplit 3 36 18%
ShuffleSplit 4 37 18.5%
ShuffleSplit 5 41 20.5%
ShuffleSplit 6 36 18%
ShuffleSplit 7 39 19.5%
ShuffleSplit 8 34 17%
ShuffleSplit 9 31 15.5%
ShuffleSplit 10 31 15.5%

Table 1: Table summarizing the results of the experiments conducted with 500
data samples, a noise with standard deviation 1 in the data generation process,
and a noise with standard deviation 0.2 in the noisy estimator, with a constant
test size of 20%. The Number of Inversions column indicates the number of
experiments out of the 200 ran where the noisy estimator outperformed the
Bayes estimator.

cases where a suboptimal estimator outperforms the theoretically optimal Bayes
estimator. These findings emphasize the importance of carefully designing and
interpreting benchmarking studies, as small changes in methodology can lead to
misleading conclusions. As the field continues to evolve, it is crucial to develop
more robust and standardized benchmarking practices to ensure that compar-
isons are meaningful and reliable.

References

1. Deng, J. et al. ImageNet: A large-scale hierarchical image database. IEEE
Conference on Computer Vision and Pattern Recognition (2009).

2. Bellemare, M. G. et al. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelligence Research 47,
253–279 (2013).

3. Moreau, T. et al. Benchopt: Reproducible, efficient and collaborative opti-
mization benchmarks. NeurIPS (2022).

4. Bouthillier, X. et al. Accounting for Variance in Machine Learning Bench-
marks. MLSys (2021).

5. Sarfraz, M. S. et al. Position: Quo Vadis, Unsupervised Time Series Anomaly
Detection? ICML (2024).

6. Lecun, Y. et al. Gradient-based learning applied to document recognition.
Proceedings of the IEEE (1998).

7. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Machine
Learning in Python (2011).

8. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2016).

3


