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Abstract. Vertical federated learning (VFL) is a variant of federated
learning where participants share the same samples but with different
features. We propose an approach that leverages a foundation model to
extract features from data (images) for VFL training, which significantly
reduces communication, while maintaining high accuracy. The approach
was validated on a VFL benchmark dataset of satellite images, showing
an improved accuracy of 1.5% and drastically reducing both the number
of communication rounds (one-shot) and the communication size (by a
factor 400).
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1 DMotivation

Vertical Federated Learning (VFL) is a variant of Federated Learning (FL) where
parties share the same data instances but with different sets of features. VFL is
particularly relevant in scenarios where different organizations hold private but
complementary information about the same individuals. For example, a bank
and an insurance company might each possess unique features about the same
customers. Combining these features can lead to more accurate models.

Communication is an important bottleneck in Vanilla VFL as many commu-
nication rounds per iteration [1]. We focus on the one-shot communication ap-
proach, which aims to leverage it by extracting latent representations of data, tra-
ditionally using Self-Supervised Learning (SSL) and then communicating these
representations only once to the label owner. To our knowledge, using founda-
tion models for extracting these representations has not yet been explored, but
we believe it could avoid computationally intensive SSL, improve performance,
and retain the communication efficiency of the one-shot approach.

2 Method

2.1 Vanilla VFL training process

Parties and Data Distribution: Assume there are n parties { Py, Ps, ..., P,}
involved in the VFL process. Each party P; holds a private dataset D; con-
sisting of the same set of samples but with different features. Formally, let
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D; = {(:cgl),x?), ... ,.ZEZ(-m))}7 where xz(-]) represents the j-th feature vector of
the i-th party.

In VFL, one party (e.g., P1) is designated as the label owner, also known
as the "active party". This party aggregates intermediate representations from
others and computes the final output, playing a key role in the process.

Training:

— Each party P; computes intermediate representation zi(k) = Mz(xgk)) with
its local model M; for each sample k& and send them to the label owner P;
— The label owner P; aggregates the received intermediate representations and
computes the final output y*) = Mg(zyc) zék), el z,(Lk)), then computes the
gradients of the loss function with respect to the intermediate representations
and sends these gradients back to the respective parties.

— Each party then uses these gradients to update their local model parameters.

These steps are repeated iteratively until the global model Mg converges to
a desired level of accuracy. Each iteration requires communication between the
parties and the label owner, making communication a critical limitation in VFL.

2.2 Proposed approach: VFL with a foundation model

We train our model using only one round of communication, leveraging founda-
tion model for feature extraction (Dinov2 [2]).

— Each party P; applies the foundation model to its local dataset D;, generating
feature vectors for each sample k

— The active party gets the combined feature dataset to train a centralized
machine learning model M cntrai

3 Results

3.1 Dataset and experiment configuration

We utilized the Satellite dataset [3], an image dataset designed for VFL scenar-
ios which comprises 16 revisits of Sentinel-2 satellites over approximately 3,000
Areas of Interest (AOIs). These 16 revisits are split among 16 parties, which aim
to train jointly a model for classification problem with 4 classes.

We took the ResNet model from [3] as our baseline. For our model, we em-
ployed the frozen, pretrained Dinov2 model [2] with a linear head, leveraging
Dinov’s strength in achieving strong performance with a simple linear classifier.
In this experiment, we utilized only the RGB channels from the 13 channels of
Sentinel-2 images to fit with Dinov2 training data.

We used the following hyperparameters: a learning rate of 1x 10™%, the Adam
optimizer with weight decay of 1 x 1074, StepLR scheduler with a step size of
10 and gamma of 0.5, 25 epochs, a batch size of 64, a 90%/10% train/validation
split.
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3.2 Experiment results

On random seeds 0 to 4 we had a mean result of 82.62% and a standard deviation
of 0.54%, improving 1.5% the accuracy from [3] baseline (81.17%), and of 4%
the accuracy of the best performing solo party with a communication budget
reduced by a factor of 400, and only one communication versus 85,650.

Table 1. Comparison of Accuracy Results averaged over 5 seeds

Method |Data Used Mean Accuracy|Standard Deviation|/Communication Size (Mb)
Ours VFL (P1-P15) 82.62% 0.54% 360.4
Baseline|VFL (P1-P15) 81.17% 0.35% 143982.1

Ours Solo (Min - Max)| 74.39% - 78.52% 0.32% - 0.27% 0
Baseline|Solo (Min - Max)| 70.60% - 73.68% 1.19% - 0.86% 0

4 Conclusion

This study demonstrates that leveraging foundation models for feature extrac-
tion in Vertical Federated Learning (VFL) can significantly enhance communica-
tion efficiency and model accuracy. Our approach achieves a 1.5% improvement
in accuracy while reducing communication size by a factor of 400 and limiting
communication to a single round.

In the future, we aim to utilize non-RGB channels by converting them to
grayscale images for feature extraction.We will also investigate security concerns
regarding the potential invertibility of shared features, exploring options such as
homomorphic encryption—viable due to the single linear layer—or incorporating
an additional layer for passive parties.
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