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Abstract. Diffusion MRI is a powerful tool that serves as a bridge between brain microstruc-
ture and cognition. Recent advancements in cognitive neuroscience have highlighted the per-
sistent challenge of understanding how individual differences in brain structure influence
behavior, especially in healthy people. While traditional linear models like Canonical Cor-
relation Analysis (CCA) and Partial Least Squares (PLS) have been fundamental in this
analysis, they face limitations, particularly with high-dimensional data analysis outside the
training sample. To address these issues, we introduce a novel approach using deep learning—
a multivariate autoencoder model—to explore the complex non-linear relationships between
brain microstructure and cognitive functions.

Keywords: diffusionMRI · Cognitive decoding · Multivariate Learning.

1 Introduction

In cognitive neuroscience, a significant gap remains in understanding how interindividual differences
in brain structure affect behavior [3]. Diffusion magnetic resonance imaging (dMRI) provides insights
into tissue microstructure [1] enabling a more comprehensive understanding of the relationship
between brain architecture and behavior.

Recent advancements in the field have shifted from one-to-one mappings between brain regions
and cognition, derived from focal brain lesion studies [2], to a regional multivariate perspective
[3]. Despite these advancements, challenges persist, particularly in research on healthy individuals.
Most current knowledge is biased towards pathological conditions, not reflecting the complexity of
brain-behavior relationships in the general population. Menon et al. [5] are among the few studies
that relate GM microstructure and cognition in healthy individuals.

The Brain Structure and Behavior (BSB) community has recently emphasized two critical as-
pects on dMRI: techniques and methodological models [3]. From the technical perspective, the focus
has primarily been on tractography and white matter, leaving grey matter and microstructure un-
derexplored [3]. Additionally, methodologically, multivariate linear models used in BSB for dMRI
data, like Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS), face challenges in
generalizability [3, 4]. These limitations highlight the need for more sophisticated models [5, 3, 10].

2 Methodology

We developed a multivariate Encoder-Decoder model to predict cognitive processes from diffusion
MRI (dMRI) signals. Data preprocessing involved filtering subjects with missing information and
outliers. We used the 3T dMRI and cognitive data from 779 subjects in the HCP database, focusing
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on the insula for its role in encoding cognitive-control functions, as noted by Menon et al. and others
[5, 11, 12]. We standardized each cognitive feature at batch level and restored them to their original
values post-prediction for consistent evaluation. To define the brain structure data, and based on
previous works [7, 8, 9], we hypothesize that the diffusion signal is modulated by microstructure
and that microstructure has a role in modulating cognition and performed a multishell analysis
with 3 b-values.
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Fig. 1: The model architecture features in two en-
coders ϕ and θ that transform X (dMRI data)
and Y (cognitive data), respectively, into lower-
dimmensional embedding spaces (z and z′). These
embeddings are then processed by a shared de-
coder ϕ which reconstructs the cognitive data
to produce ŷ and ŷ′, facilitating the prediction
of cognitive functions. The design allows for the
exploration of complex multivariate patterns be-
tween brain structure and cognitive features.

The proposed model, illustrated in fig. 1,
features two encoder modules—one for brain
structure data (ϕ(X) = z) and another for cog-
nitive data(θ(Y ) = z′)—each compressing their
respective inputs into latent-dimensional em-
beddings zandz′(n = 64). These embeddings
are then used by a shared decoder (ψ) to recon-
struct cognitive data, capturing complex, non-
linear relationships between brain structure and
behavior. The model’s training involved sequen-
tially optimizing the encoders and the decoder
using mean squared error loss functions, ensur-
ing consistent and accurate reconstructions of
cognitive features from the embeddings:

Lencoders = L(z, z′)

Ldecoder = αL(z, z′) + βL(y, ŷ) + γL(y, ŷ′)

Where α, β, and γ are weight hyperparam-
eters that can be adjusted to balance the im-
portance of each term. In our analysis, all the
losses had the same importance α = β = γ = 1.

3 Results and Discussion

The performance of our multivariate Encoder-Decoder model was compared with traditional meth-
ods (CCA and PLS) using k = 5 k-fold cross-validation to ensure robust evaluation. We used
Spearman correlation values, to measure predictive accuracy, and the results are shown in table 1
alongside our model’s best results obtained for one sample. These values indicate that our model out-
performs CCA and PLS in predicting multivariate cognitive processes during the validation phase,
demonstrating superior out-of-sample performance. Despite the noticeable gap between training
and validation results, that suggests potential overfitting, in the context of complex phenomena
such as BSB, our primary focus is on achieving good out-of-sample performance rather than min-
imizing the gap between training and validation set performance. These correlations results align
with significant findings in the field, such as those by Menon et al., where correlations around 0.2
are considered high, affirming a meaningful relationship between dMRI attenuations and behavior.
Therefore, the table reflects the peak performance of our model from one sample, highlighting its
potential despite variability in generalization.
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Feature
CCA PLS Ours

Training Validation Training Validation Training Validation

Age 1.00 0.17 0.22 0.13 0.37 0.03
Working Memory Acc. 0.45 0.14 0.47 0.16 0.57 0.20
Working Memory RT 0.24 0.14 0.32 0.06 0.49 0.26
Relational Task Acc. 0.34 0.16 0.45 0.01 0.37 0.039
Relational Task RT 0.25 0.15 0.15 0.11 0.32 0.054
Gambling Task 0.30 0.15 0.09 0.09 0.47 0.20
Gambling Task RT 0.11 0.03 0.25 0.00 0.52 0.17
List Sorting 0.17 -0.05 0.24 0.16 0.57 0.29
Flanker 0.03 0.06 0.35 0.07 0.54 0.07
Card Sorting 0.37 0.12 0.47 0.15 0.41 0.21
Picture Sequence 0.19 0.04 0.16 0.19 0.55 -0.01
Processing Speed 0.20 0.04 0.32 0.06 0.47 0.21

Table 1: Model comparison. Spearman’s correlation factor for each cognitive feature in training and
validation using CCA, PLS, and our model, based in multimodal learning. The highest values per
row, for both training and validation, are in bold to indicate the best model performance.

4 Conclusions

This study demonstrates that our novel neural network-based model improves the prediction of
cognitive functions from diffusion MRI (dMRI) data compared to traditional linear models such
as Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS). Our approach, which
integrates distinct encoder modules for brain structure and cognitive data with a shared decoder
module, offers a more understanding of the relationship between diffusion MRI attenuations and
cognitive functions. The model’s better performance, as indicated by superior validation Spearman
coefficients, highlights its ability to capture complex, non-linear relationships that traditional models
struggle to uncover.

Despite the promising results, the training-validation gap observed in our model suggests po-
tential overfitting. This gap, larger than that seen in the PLS model, underscores the need for
careful interpretation. It also indicates that cognitive variables might not be fully independent, as
evidenced by the varied performance across cognitive features. These observations align with recent
findings by Menon [5], which suggest that latent space models could provide further insights by
uncovering underlying patterns not captured by existing methods.

Our study acknowledges that while the neural network model offers a significant advancement
over classical approaches, it is not yet optimized for interpretability. Nonetheless, the model presents
a flexible and powerful starting point for exploring brain-behavior relationships, particularly in
handling the high-dimensional and variable nature of neuroimaging data.

Future research should focus on integrating additional data dimensions, such as structural MRI
data, and exploring latent space models. These directions could reveal deeper patterns and relation-
ships of the cognitive processes and their neural bases which will help in advancing both theoretical
and practical applications in cognitive neuroscience.
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