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Abstract. The tensor-train decomposition has gained particular inter-
est in recent years in tensor algebra due to its space- and compute-
efficiency, as well as its ability to extend vector and matrix products into
networks of tensor contractions. However, the tensor-train scalar product
introduces the challenge of finding a suitable contraction order.
In this work, we introduce quasi-optimal contraction ordering algorithms
tailored for the tensor-train scalar product. Experimental results demon-
strate that our algorithms surpass general tensor network solvers, while
having shorter execution times than a state-of-the-art optimal solver,
offering a promising alternative to both.
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1 Motivation

In multilinear algebra, a tensor is an object representing multidimensional data.
Tensors have become a common tool in a multitude of fields, such as machine
learning and signal processing [8], quantum computing [4], and many more [5].
Thus, accelerating tensor operations is crucial for enhancing performance and
efficiency, making it a core building block for advancing scientific research.

The usefulness of tensors is, however, limited by the exponential growth of
memory requirements, which is often called the curse of dimensionality. To
overcome this limitation and to improve computational performance, tensors
can be decomposed into memory-efficient approximations [5], one technique of
particular interest in recent years being tensor-train decomposition [7].

The definition of tensor-trains permits one to extend vector- and matrix-
products into the TT form, representing them as a network of contractions be-
tween tensor-trains. Immediately, a problem arises: what is the best order to
compute the contractions in tensor-train products?

In our experience, state-of-the solutions for general tensor networks [3] are
good on small TT and in many cases give progressively worse orderings when
TT get longer, even surpassing the naive cost, which motivated us to design the
contraction ordering algorithms tailored to TT scalar product structure.



2 P. Dominikowski

2 Contributions

As finding an optimal ordering of the contractions for the general tensor network
is a well-known NP-complete problem [6], in this work we present multiple
quasi-optimal algorithms to solve the tensor-train scalar product, each variant
is either faster or gives a better solution. While focused, our algorithms are gen-
eralized to any type of tensor train scalar-product, i.e. products of type vector-
matrix-. . . -matrix-vector.

1-sided 1-dim algorithm

The 1-sided 1-dim algorithm is an iterative algorithm, which finds a solution for
a window consisting of the left-most mode contraction and rank contractions. At
each step of the algorithm, only two out of the three contractions are performed,
generating multiple sub-problems with different mode contraction costs.

2-sided ∆-dim algorithm

The 2-sided ∆-dim algorithm is a dynamic programming algorithm, which finds
the solutions for each window in the network using either optimal solver for
windows up to ∆, or by building quasi-optimal orders based on already calculated
smaller windows for windows larger than ∆.

3 Results

We have compared our algorithms in terms of the computational cost of yielded
contraction order and the execution time with the Optimal solver, state-of-the-
art hypergraph partitioning tools Hyper-Greedy, CGreedy, Hyper-Kahypar [3],
QuickBB [2] and FlowCutter [1] algorithms, and the naive approach. The bench-
mark consisted of various TT networks and scalar product problems.
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Fig. 1. Comparison of the characteristics of our contraction ordering algorithms with
state-of-the-art solutions for vector-vector scalar product xxT
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The comparison of the algorithms for the vector-vector product case shows
that our algorithms provide best-in-class quasi-optimal contraction orders, con-
verging towards the optimal contraction cost. Notably, 2-sided ∆-dim is nearly
indistinguishable from the optimal solution, even for small ∆, while the best
competing algorithms Hyper-Greedy and CGreedy diverge from optimal, reach-
ing 10-15% and 15-50% worse results respectively, for TT of length 100.

Additionally, an important advantage of our algorithms is in terms of exe-
cution time. The optimal solver increases in execution time much faster than
all other algorithms, easily reaching the threshold of 1 hour or more to find a
solution, while 1-sided 1-dim algorithm has an unbeatable competitive edge.

4 Conclusions

We have introduced quasi-optimal algorithms to solve the contraction ordering
problem in tensor-train scalar products, that show significant improvement
when compared to algorithms designed for a general tensor network, while ne-
cessitating only a fraction of the time required by the exact solver.

Thanks to the ubiquitous usage of tensors in a multitude of domains, our
algorithms offer a promising alternative to solve the contraction ordering
problem on tensor-train scalar products and can thus bring a significant gain in
terms of the performance and efficiency of the computations in these fields.
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