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Abstract. Deep Neural Networks (DNNs) are powerful models for solv-
ing machine learning problems due to their ability to summarize complex
information from large datasets. These models consist of elementary com-
ponents known as neurons, organized in layers.
Despite their modularity, only a limited number of neuron types are com-
monly used. Traditionally, DNNs compute their outputs using standard
neurons, where the output is a weighted sum of the inputs. Recently,
max-plus neurons have emerged as a novel paradigm, replacing addition
with maximum and multiplication with summation. The formula for the
output is thus ŷ = maxj{Xi,j + wj}.
We obtain sparse subgradients from the max-plus structure, a situation
that does not happen for smooth functions. Current backpropagation al-
gorithms cannot take advantage of this feature and make many unneces-
sary computations. We developed a novel sparse subgradient algorithm
tailored for non-convex, non-smooth optimization problems in DNNs.
Initial experiments in binary classification have demonstrated promis-
ing results, motivating further investigation into its efficacy in multiclass
classification scenarios.
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1 Empirical evaluation of subgradient sparsity

We conducted an experiment based on the model from [1], which minimizes the average
Categorical Cross Entropy (CCE) loss to solve a multiclass classification problem using
the MNIST dataset. In this experiment, we measured the sparsity of the subgradients
of the average loss and the loss for a single random sample in each iteration using
SGD. We observed that while the average loss gradients are dense, the subgradients
computed with SGD are very sparse (Table 1).
We quantify the level of sparsity of the sub-gradient [2] using a metric denoted as γ,
where:

γ(x) =
number of non-zero elements in x

dim(x)

Consequently, we modified the model to select the sample that yields the worst loss,
defined as the maximum of the loss instead of the average. The sparsity of the subgra-
dient is a characteristic feature of non-smooth functions like the maximum function.
This sparsity affects the backpropagation step in the Max-Plus Neural Network.
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Table 1. Sparsity level of the average CCE loss and max CCE loss

Model L = − 1
N

∑N
i=1

∑D
j=0 yi,j log(ŷi,j) L = max

1≤i≤N
−
∑D

j=0 yi,j log(ŷi,j)

γ( ∂L
∂w

) 0.8187597457118868 0.0034634760705289673

On the one hand, the benefit of this sparsity is that the weight update step only in-
volves the non-zero elements in the subgradient. On the other hand, recomputing the
maximum can be computationally expensive. In [2] they proposed a fast method for
recomputing the maximum using a Short Computational Tree (SCT) format, and an
algorithm to solve convex non-smooth problems.

2 Max-Plus Neural Network model

Building on these concepts, we developed a sparse gradient algorithm to tackle non-
convex, non-smooth optimization problems, particularly focusing on minimizing the
loss in neural networks composed of multiple functions. Our sparse subgradient algo-
rithm has shown promising results in binary classification tasks.

Below, we present our Max-Plus Neural Network model, designed without a hidden
layer, for multi-class classification using the MNIST dataset (classify digits 0 to 9). Since
the true labels are in integer format, we use Sparse Categorical Cross-Entropy (SCCE)
instead of Categorical Cross-Entropy, which is more suited for one-hot encoded labels.

Fig. 1. Max-Plus Neural Network structure
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The model that we are working on is:

min
w

max
1≤n≤N

SCCE = min
w

max
1≤n≤N

− log(ŷn,yn)

where ŷn,yn =
emaxp(Xn,p+Wd,p)∑9

d=0 e
maxp(Xn,p +Wd,p)

After simplification, we are solving the optimization problem

min
w

max
n

(
−max

p
(Xn,p +Wy(n),p) + log

9∑
d=0

exp

(
max

p
(Xn,p +Wd,p)

))
Where :
– X: is the input matrix where the rows are the images and the columns are the

corresponding pixels for each image.
– W : is the weight matrix where the rows represent the digits and the columns

represent the weights of the pixels corresponding to each digit.
– y(n): is the true label for image n.

• n : images, where 1 ≤ n ≤ 60000
• p : pixels, where 1 ≤ p ≤ 784
• d : digits, where 0 ≤ d ≤ 9

3 Sparse Subgradient algorithm

Assume we have the following optimization problem

min
x∈Q

f(x)

where Q is a simple closed convex set in Rn and f is a non-smooth, non-convex function,
then the proposed sparse subgradient algorithm is:

x0 ∈ Q, xk+1 = πQ

(
xk − f(xk)− f∗

∥f ′(xk)∥2
f ′(xk)

)
, k ≥ 0.

where f ′(xk) is a sparse subgradient which is an element of a conservative field [3].
In our upcoming work, we plan to evaluate the performance of our sparse subgradient
algorithm on multi-class classification tasks, interpreting our model as a SCT structure.
We will also focus on enhancing the convergence rate of the algorithm. Furthermore,
we intend to explore various configurations of Max-Plus Neural Networks, starting
with a model that has no hidden layers, then progressing to a model with one hidden
layer, and finally experimenting with combinations of different neuron types, such as
max-plus and max-minus neurons.
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