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Abstract. Deep Neural Networks (DNNs) are powerful models for solv-
ing machine learning problems due to their ability to summarize complex
information from large datasets. These models consist of elementary com-
ponents known as neurons, organized in layers.

Despite their modularity, only a limited number of neuron types are com-
monly used. Traditionally, DNNs compute their outputs using standard
neurons, where the output is a weighted sum of the inputs. Recently,
max-plus neurons have emerged as a novel paradigm, replacing addition
with maximum and multiplication with summation. The formula for the
output is thus § = max;{X;; +w;}.

We obtain sparse subgradients from the max-plus structure, a situation
that does not happen for smooth functions. Current backpropagation al-
gorithms cannot take advantage of this feature and make many unneces-
sary computations. We developed a novel sparse subgradient algorithm
tailored for non-convex, non-smooth optimization problems in DNNs.
Initial experiments in binary classification have demonstrated promis-
ing results, motivating further investigation into its efficacy in multiclass
classification scenarios.
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1 Empirical evaluation of subgradient sparsity

We conducted an experiment based on the model from [I], which minimizes the average
Categorical Cross Entropy (CCE) loss to solve a multiclass classification problem using
the MNIST dataset. In this experiment, we measured the sparsity of the subgradients
of the average loss and the loss for a single random sample in each iteration using
SGD. We observed that while the average loss gradients are dense, the subgradients
computed with SGD are very sparse (Table .

We quantify the level of sparsity of the sub-gradient [2] using a metric denoted as 7,

where: .
number of non-zero elements in x

v(w) = dim(x)
Consequently, we modified the model to select the sample that yields the worst loss,
defined as the maximum of the loss instead of the average. The sparsity of the subgra-
dient is a characteristic feature of non-smooth functions like the maximum function.
This sparsity affects the backpropagation step in the Max-Plus Neural Network.
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Table 1. Sparsity level of the average CCE loss and max CCE loss

Model |L = —+ Zf\:l Zf:o yi,;log(9s:,;)|L = max — ZJ[.):O Yi,j 1og(9s,5)

1<i<N

(L) 0.8187597457118868 0.0034634760705289673

On the one hand, the benefit of this sparsity is that the weight update step only in-
volves the non-zero elements in the subgradient. On the other hand, recomputing the
maximum can be computationally expensive. In [2] they proposed a fast method for
recomputing the maximum using a Short Computational Tree (SCT) format, and an
algorithm to solve convex non-smooth problems.

2 Max-Plus Neural Network model

Building on these concepts, we developed a sparse gradient algorithm to tackle non-
convex, non-smooth optimization problems, particularly focusing on minimizing the
loss in neural networks composed of multiple functions. Our sparse subgradient algo-
rithm has shown promising results in binary classification tasks.

Below, we present our Max-Plus Neural Network model, designed without a hidden
layer, for multi-class classification using the MNIST dataset (classify digits 0 to 9). Since
the true labels are in integer format, we use Sparse Categorical Cross-Entropy (SCCE)
instead of Categorical Cross-Entropy, which is more suited for one-hot encoded labels.
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Fig. 1. Max-Plus Neural Network structure
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The model that we are working on is:

min max SCCE = min max —log(§n,y,)
w 1<n<N w 1<n<N )

emaxp(Xn7p+Wdyp)
9
>0 €7 (Xnp + Wayp)

After simplification, we are solving the optimization problem

where §n,y,, =

9
min max ( max(Xon,p + Wy, .p) + logz exp (maX(Xn,p + Wd,p)))
p p

w n
d=0
Where :

— X: is the input matrix where the rows are the images and the columns are the
corresponding pixels for each image.
— W: is the weight matrix where the rows represent the digits and the columns
represent the weights of the pixels corresponding to each digit.
— y(n): is the true label for image n.
e n : images, where 1 < n < 60000
e p : pixels, where 1 < p < 784
e d : digits, where 0 < d <9

3 Sparse Subgradient algorithm

Assume we have the following optimization problem
min f(x
min f(z)

where @ is a simple closed convex set in R™ and f is a non-smooth, non-convex function,
then the proposed sparse subgradient algorithm is:
fl@e) = [

To € Q, Tpy1 =TQ (mk - Wf(xk)) , k>0

where f'(x)) is a sparse subgradient which is an element of a conservative field [3].

In our upcoming work, we plan to evaluate the performance of our sparse subgradient
algorithm on multi-class classification tasks, interpreting our model as a SCT structure.
We will also focus on enhancing the convergence rate of the algorithm. Furthermore,
we intend to explore various configurations of Max-Plus Neural Networks, starting
with a model that has no hidden layers, then progressing to a model with one hidden
layer, and finally experimenting with combinations of different neuron types, such as
max-plus and max-minus neurons.
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